
Technical White Paper

Centralised logging with rsyslog
By Peter Matulis – September 2009

© Copyright Canonical 2009

www.canonical.com



Overview

The management of multiple systems requires the setup of tools to control the servers

behaviour in real time and post analysis. Moreover, regulations and best practices often require

the IT department to maintain an accurate log of all events happening in their systems in order

to allow for later analysis. Performing such analysis on each system is time consuming and is

relatively insecure because if a server is compromised, the attacker, having gained root access,

will be able to cover its traces by removing the portions of the logs that he wants.

This white paper analyses the tools available in Ubuntu to perform the task of centralised

logging, recommends the use of rsyslog and provides the steps needed to configure a set of

servers to send their events to a central logging facility.

Centralised logging with rsyslog 2 www.canonical.com

Table of Contents

Overview...2

Introduction..5

Logging models..6

1. Single system (to disk)..6

2. Multiple systems (to disk)..6

3. Multiple systems (to database)..7

4. Branch offices (remote storage)..8

Technical considerations to central logging..9

Network logging reliability..9

Database logging...9

TLS connections..9

Logging software...10

Getting started with rsyslog..11

Installation...11

Configuration structure..12

Rules/actions...12

Output file syncing...14

Timestamps...14

Templates..14

Property-based filters..16

Queue processing...17

Central logging scenarios...18

Multiple systems (to disk)..18

Multiple systems (to database)..18

Branch offices (remote storage)..20

On the Certificate Authority..20

On the logging server...21

On a logging client...22

Advanced Rsyslog features applicable to central logging.......................23

BSD-style blocks...23

Logging queues...23

Disk Queues...23

Centralised logging with rsyslog 3 www.canonical.com

In-Memory Queues..24

Hybrid Disk-Assisted In-Memory Queues..24

Queueing and de-queueing...24

Logging queue examples..25

Local disk logging...25

Remote disk logging...25

Remote database logging..25

Discard watermarks...26

Appendix A: References and useful Links...27

Appendix B: rsyslog.conf / syslog.conf diff...28

Appendix C: Message properties..30

Appendix D: Property options...32

Centralised logging with rsyslog 4 www.canonical.com

Introduction

Every computer system, regardless of its operating system, has a mechanism that records

activities taking place within it. Such 'logs' do not normally concern the average end-user but

play a crucial role in the life of a system administrator or support analyst when problems arise

because errors that occur are included in those activities and are the first stop in attempts at

troubleshooting.

In addition, since logging is essentially a record of what is happening, with systems processing

company-sensitive or even secret data the subject assumes a whole new dimension. In large

organisations, where the number of computer systems can range in the thousands, there is the

task of managing such logging data. Geographically diverse branch offices bring another

element to the mix. Finally, logs play a vital role when a system has been compromised by an

external (or internal) hostile agent.

This white paper also tries to address how a company technically manages the potentially huge

volume of logs its computer systems generate.

Other questions deserving of serious consideration but which are not covered by this technical

paper are:

○ Authorisation (i.e. who should have access to such logs?)

○ Legally, how far back in the past must a company retain its logs (particularly when

managing client data)?

The software that is covered in this document is rsyslog. Possible alternatives are the stock

Linux/Unix syslog system or syslog-ng. This paper describes the reasons for the choice of

rsyslog in the section Logging Software and provide technical caveats and background

information in the section Technical Considerations and Historical Background.

This paper is not an introduction to the field of system logging. See Appendix A, "The Ins and

Outs of System Logging Using Syslog" for the basics.

Note: at the time of publication, Ubuntu 9.10 (karmic koala) is in alpha and uses rsyslog as its

default tool for logging, replacing sysklogd that was the previous default . The analysis

performed for this white paper is what triggered this change.

Centralised logging with rsyslog 5 www.canonical.com

Logging models

This section surveys several typical architectural models of computer system logging.

1. Single system (to disk)

Individual computer systems, by default, perform logging. Messages typically get written to the

local hard drive but Network Attached Storage (NAS) or Storage Area Network (SAN) are also

valid storage options for this model.

2. Multiple systems (to disk)

Known as central logging, many systems forward their logs over the network to a central logging

server. Analogous to the single-system model, on the server-side, messages get written to the

local hard drive or to some other available storage.

Centralised logging with rsyslog 6 www.canonical.com

3. Multiple systems (to database)

A common option is to have the remote messages stored directly into a database on the server

with, possibly, a web-based interface acting as a viewing/query tool.

The database need not reside on the logging server (as shown in the diagram); it can be placed

onto a separate system.

Centralised logging with rsyslog 7 www.canonical.com

4. Branch offices (remote storage)

We continue the logical progression where multiple branch offices are each implementing the #2

or #3 model. Their central logging servers now relay their logs to a second-level central logging

architecture (typically residing at the company head office or data centre). The fact that

sensitive information is being transported over a non-trusted network (here the internet) is a vital

facet that needs to be addressed by your company's security team.

Centralised logging with rsyslog 8 www.canonical.com

Technical considerations to central logging

Network logging reliability

Traditional Unix syslog uses the UDP protocol. This is unsuitable for central/network

logging due to the protocol's lossy/unreliable nature. Alternative software such as

syslog-ng and rsyslog include support for the TCP protocol. This is a great

improvement but there remains nonetheless a reliability issue even with TCP.

Thousands of messages can be lost if the network connection with the logging server

breaks as there is no mechanism in TCP that notifies the sender immediately (its send

buffer continues to fill up). The rsyslog project is currently developing a truly reliable

logging protocol: RELP (Reliable Event Logging Protocol). The usage of RELP

however is outside the scope of this white paper however.

Database logging

When logging to a database you need to make sure your database can actually handle

the rate of messages (messages per second, mps) that is being directed at it. Rsyslog

offers ways to handle this and will be mentioned in the Advanced Rsyslog Features

section but the database will often present an I/O bottleneck. Multiple servers may

need to be used in such an environment.

TLS connections

The TCP listener can currently only listen on a single port. You therefore cannot at

this time, use a dual-mode setup (encrypted and unencrypted channels).

Centralised logging with rsyslog 9 www.canonical.com

Logging software

The rsyslog tool was chosen over the more popular syslog-ng for the following reasons:

1. Licensing and software features

Syslog-ng is dual-licensed. A commercial product has been forked from the open-

source (GPL) project and the more advanced features are found only in the

commercial offering. Affected features of import so far are i) native TLS/SSL support

(i.e. not using stunnel) and ii) on-disk spooling of messages. It's unknown how these

forks will diverge in the future.

2. Truly reliable message delivery (RELP)

Rsyslog is confronting the unreliability of TCP in a logging environment through the

development of the RELP protocol whereas syslog-ng is not.

3. Compliance with IETF regarding reliable TCP transport (RFC 3195)

Rsyslog is compliant with the standards regarding reliable TCP transport whereas

syslog-ng is not.

4. Native support for traffic encryption (TLS/SSL)

Rsyslog supports TLS natively whereas the GPL fork of syslog-ng does not.

5. SNMP support

Rsyslog supports SNMP traps whereas syslog-ng does not.

6. BSD-style hostname and program name blocks

Rsyslog supports powerful BSD-style hostname and program name blocks for easy

multi-host implementations whereas syslog-ng does not.

7. On-disk message spooling
Rsyslog has on-disk file spooling features that are lacking in GPL syslog-ng:

● on-demand (as needed) spooling
● independent spool files per log action
● spool files on multiple disks
● Process spooled messages during configured timeframes

8. Include config files
Rsyslog has configuration include file support that syslog-ng lacks. This allows one to
organize and split one's configuration into multiple files.

9. Native support for email alerts
Rsyslog natively supports the ability to send email alerts based on log message
content. Syslog-ng needs to pipe data to an external process.

Centralised logging with rsyslog 10 www.canonical.com

Getting started with rsyslog

This section covers:

• Installation

• Configuration structure

• Rules/actions

• Timestamps

• Templates

• Properties-based filters

• Expression-based filters

• Queue processing

Installation

Installing rsyslog on Ubuntu is easy:

$ sudo aptitude install rsyslog

To get extra documentation:

$ sudo aptitude install rsyslog-doc

Rsyslog is only compatible with sysklogd/klogd when it is run in the specified compatibility mode

(option '-c0'). By default, rsyslog runs in a mode of '-c3' (not considered compatibility mode) and

displays a warning if this is not the case. See the /etc/default/rsyslog file.

All configuration, with the exception of the above defaults file, is placed in the /etc/rsyslog.conf

file or in files found under the /etc/rsyslog.d directory. In this document, configuration examples

are coloured like this.

Rsyslog should now be running. It has converted the existing syslog.conf file into its own

rsyslog.conf file. A diff of the two files has been included in Appendix B.

In addition, there is no separate kernel log daemon (klogd) running. Kernel logging is

incorporated into rsyslog via its imklog input plug-in (enabled by default).

Local logging functionality is provided by the imuxsock plug-in (also enabled by default).

$ModLoad imuxsock
$ModLoad imklog

Naturally, any configuration changes require a restart:

$ sudo /etc/init.d/rsyslog restart

Or if the version of Ubuntu you are running is 8.10 (intrepid) or more recent:

$ sudo service rsyslog restart

Centralised logging with rsyslog 11 www.canonical.com

Configuration structure

Configuration files are structured in the following manner:

● Modules

● Global directives

● Filter rules

All modules and global directives need to be specified one per line and must start with a dollar-

sign ($). They affect all rules.

Rules/actions

Rules consist traditionally of 'selector action' (where selector consists of 'facility.priority').

This method has been retained from regular sysklog because they are effective but also for

backward compatibility with sysklog configuration files. However, rsyslog provides other unique

and powerful methods of building rules as we'll see.

The facility and priority are defined in RFC 3164. Here is a summary:

Facilities

Numerical Code Keyword Facility

0 kern Kernel

1 user Regular user processess

2 mail Mail system

3 daemon System daemons

4 auth Security (authentication and authorisation) related

commands

5 syslog Syslog internal messages

6 lpr Line printers system

7 news NNTP subsystem

8 uucp UUCP subsystem

10 authpriv Private authorisation messages

16-23 local0-7 Site specific use

Centralised logging with rsyslog 12 www.canonical.com

Priorities

Numerical Code Keyword Facility

0 emerg Emergency: system is unusable

1 alert Alert: action must be taken immediately

2 crit Critical: critical conditions

3 err Error: error conditions

4 warning Warning: warning conditions

5 notice Notice: normal but significant conditions

6 info Informational: informational messages

7 debug Debug: debug level messages

Selectors can contain the special keywords ' * ' and 'none', meaning all or nothing, respectively.

A selector can include multiple facilities separated with commas. Multiple selectors can also be

combined with semicolons.

You may also precede the priority with an '=' and/or an '!' to specify, respectively, the inclusion

of a single priority or the exclusion of the priority and any higher (numerically). Using both ('!=')

will exclude the single priority. These features are taken from the BSD sources.

Examples:

1. A rule that sends messages for one facility and of any priority to file:

daemon.* /var/log/daemon.log

2. A rule combination that sends messages for two facilities and of any priority to one file

and then everything else to another:

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none /var/log/syslog

3. A selector that picks out messages for one facility and of a single priority:

mail.=info

4. A compound selector that picks out messages for all facilities but only of priority info,

notice and warning:

.info;.!err

5. A rule that sends messages for one facility and of all priorities except that of warning:

kern.*;kern.!=warn /var/log/kernel/nowarnings

The terms "rule" and an "action" are often used synonymously. A rule defines an action.

Queues and queue parameters are covered later in this paper but for now we need to

Centralised logging with rsyslog 13 www.canonical.com

remember that:

• An action queue is created each time an action is specified.

• Action queue parameters are reset after an action queue has been created (allowing

the creation of a new action queue and its corresponding parameters).

Output file syncing

Due to performance degradation, rsyslog no longer retains sysklog's default of file syncing 1 if

not specified otherwise (by placing a dash in front of the output file name). Even if rsyslog finds

sync selector lines it will ignore them. In order to enable file syncing you must explicitly do so at

the top of your configuration file:

$MainMsgFileEnableSync on

Timestamps

Rsyslog comes with high-precision timestamp support (disabled by default). This feature is

controlled by the following parameter:

$MainMsgFileDefaultTemplate RSYSLOG_TraditionalFileFormat

Comment it out in order to gain this feature (turn on high-precision timestamps).

Here is a comparison of traditional and high-precision timestamps, respectively:

Nov 17 12:01:44 client_hostname ubuntu: test

2008-11-17T12:02:47.372490-05:00 client_hostname ubuntu: test

Templates

Templates in rsyslog are user-definable formats that are applied to message queues. A

template is associated with every type of output and can also be used for dynamic file name

generation. In particular, for database logging, a template is used that converts a message into

a proper SQL statement. Since templates are integrated into rsyslog at a basic level,

hardcoded templates are available upon installation (i.e. those that are compatible with the

stock sysklog).

A template is defined in this way:

$template template_name,"text %property% text %property%\n"
,<options>

Where options can be only sql-related at this time. They are applied automatically as needed

and do not concern us here.

We can modify properties in interesting ways where each of the above properties can be

extended:

%property:fromChar:toChar:options%

1 - File syncing writes every message immediately upon reception and waits until that write has been
deemed successful before continuing.

Centralised logging with rsyslog 14 www.canonical.com

Where 'fromChar' and 'toChar' are character addresses. These enable us to begin and end a

property's value at certain places (ex: 1:2 are the first two characters in the value of the

specified property). Property options are listed in Appendix D.

We apply this template to messages by associating it with the default template for file action (we

can do the same for forwarding/network action):

$ActionFileDefaultTemplate template_name

Default forwarding templates used with UDP or TCP are defined with the following parameter:

$ActionForwardDefaultTemplate

Examples:

1. A template named "simple_template" that adds the word 'text' before and after the

regular syslog message. Following the example is output after the string "test" was

sent with the 'logger' command:

$template simple_template,"text_before %msg% text_after\n"

text_before test text_after

2. A template named "uppercase_template" that does the same but puts the property

value in uppercase:

$template uppercase_template,"text_before %msg:::uppercase%
text_after\n"

text_before TEST text_after

Centralised logging with rsyslog 15 www.canonical.com

Property-based filters

This type of filter is unique to rsyslog. Property-based filters provide the capability to filter on

message properties like hostname, syslogtag and msg (full list of properties provided in

Appendix C). Each property can be evaluated against a string (the value) using a specified

"compare-operation":

:property, [!]compare-operation, "value"

Naturally, the '!' is to negate the comparison.

To assist in debugging, rsyslog provides debug information for property-based filters during their

evaluation. Invoke rsyslogd in the foreground while specifying the "-d" option to enable this.

Comparison operators

contains value is contained in property contents

isequal value is identical to property contents

startswith value is found at the beginning of property contents

regex value is matched against property contents using a POSIX regular expression

Examples:

1. Send messages beginning with a certain string to their own file:

:property, startswith, "pam_unix"
/var/log/properties/startswith-pam_unix

2. Send messages matching a certain regular expression (e.g.. "/dev/sda2") to their own

file:

:property, regex, ".*sd.*"
/var/log/properties/regex-sd

Centralised logging with rsyslog 16 www.canonical.com

Queue processing

All incoming messages are placed in the main message queue where they are then filtered by

configured actions (what to do with certain messages) and assigned to the action's queue and

processed accordingly. This is all applied serially. The consequence of this is that every

action's processing is only as fast as the sum of all the actions. When even one action is

regularly slow this can become a serious problem. This is true even to the point of actions

ceasing to be processed. This can occur, for example, when an action writes to a remote

database and the database becomes overloaded or simply unavailable. The answer here is to

de-couple the slow action queues from the main queue, effectively creating parallel processing.

This is simply accomplished with rsyslog.

In the configuration files, the main queue is denoted by MainMsg and a de-coupled action

queue is denoted by Action. In this document, queue parameters generically contain the place

name <object> to refer to the queue type. So replace that with either of the two queue types

when using them.

Examples:

1. Specify (and enable) a disk queue for the main message queue:

$MainMsgQueueFileName some_filename1

2. Specify (and enable) a disk queue for an action queue:

$ActionQueueFileName some_filename2

Centralised logging with rsyslog 17 www.canonical.com

Central logging scenarios

This section looks at how to implement logging models #2, #3, and #4 encountered earlier.

Multiple systems (to disk)

Each client system should have rsyslog installed. The server software does not need to be

rsyslog as long as it is compatible with the chosen transport protocol.

You first need to decide what protocol you want to use: UDP, TCP.

On the server, assuming you are running rsyslog, you do this by enabling the appropriate input

module, as well as specifying the port to be used:

UDP:

$ModLoad imudp
$UDPServerRun 514

TCP:

$ModLoad imtcp
$InputTCPServerRun 514

On the client, you specify either the UDP or TCP protocol with the '@' or '@@' characters

respectively.

Examples:

• Here we are directing the client to forward all its logs via UDP to the logging server

whose IP address is 192.168.0.1:

. @192.168.0.1:514

• The same but over TCP:

. @@192.168.0.1:514

Multiple systems (to database)

Rsyslog supports the following databases:

• MySQL

• PostgreSQL

• Oracle

• SQLite

• Microsoft SQL

• SyBase

Centralised logging with rsyslog 18 www.canonical.com

• Firebird/Interbase

• Ingres

• mSQL

MySQL and PostgreSQL are supported natively (plug-ins provided) while the rest are supported

via libdbi, a database abstraction layer. Below we provide guidance for MySQL.

Each client should be set up for central logging. There are no other requirements for database

logging on the client side.

First, install the module on the logging server:

$ sudo aptitude install rsyslog-mysql

Next, the server should load the output module ommysql and be configured to connect to the

database. Its configuration should be similar to the following:

$ModLoad ommysql
. :ommysql:localhost,Syslog,rsyslog,abc123

This configuration is set up automatically when you install the above package. It is implemented

as an include file found: /etc/rsyslog.d/mysql.conf .

In addition, the MySQL database creation process is also automated. The newly created

database is called 'Syslog', containing two tables: 'SystemEvents' and

'SystemEventsProperties'. The installation process will prompt you for a password (user

'rsyslog' is used by the software to access the database). A password will be generated if you

do not provide one and the credentials end up in the configuration above (i.e. I provided the

password 'abc123' during installation). The only privilege required by the database user is

INSERT.

Centralised logging with rsyslog 19 www.canonical.com

Branch offices (remote storage)

This extension to the central logging model involves the use of a non-trusted network such as

the Internet. Securing the connection over which the syslog data is transported may be

required. In a branch office environment it is probable that a VPN is already in place. If so, this

option should be used. In the absence of a company VPN, however, you may choose to use

the TLS/SSL protection that rsyslog natively provides.

We will provide the basic steps required to set this up. See Appendix A, "The GNU Transport

Layer Security Library" for more on TLS.

On the system where you will be creating keys and signing certificates you will need to install

the necessary tools and create directories to manage the various files:

$ sudo aptitude install gnutls-bin
$ mkdir -p ~/tls/{ca,server,client}
$ chmod go-rwx ~/tls/{ca,server,client}

Notes:

• You need to create a separate certificate for each machine (client and server).

• When generating a certificate (-c option) use the proper DNS name of the machine in

question (dnsName dialogue) as this is the name used in the certificate. Here, we

assume the names of the server and client are, respectively, server.example.com and

client.example.com.

• Protect all private keys.

• For security reasons, try to keep the machine acting as CA not permanently connected

to a network.

For simplicity, create all keys, requests and certificates on the CA:

On the Certificate Authority

1. Manage the CA:

$ cd ~/tls/ca

2. Create the private CA key (ca-key.pem):

$ certtool -p --outfile ca-key.pem

3. Self-sign the public CA certificate (ca.pem):

$ certtool -s --load-privkey ca-key.pem --outfile ca.pem

4. Manage the server:

$ cd ~/tls/server

5. Create the private server key (server-key.pem):

Centralised logging with rsyslog 20 www.canonical.com

$ certtool -p --outfile server-key.pem

6. Generate a signing request (request.pem):

$ certtool -q --load-privkey server-key.pem \
--outfile request.pem

7. Sign the request with the CA private key to obtain the server's certificate (server-

cert.pem):

$ certtool -c --load-request request.pem \
--outfile server-cert.pem \
--load-ca-certificate ../ca/ca.pem \
--load-ca-privkey ../ca/ca-key.pem

8. Manage a client:

$ cd ~/tls/client

9. Create the private client key (client-key.pem):

$ certtool -p --outfile client-key.pem

10. Generate a signing request (request.pem):

$ certtool -q --load-privkey client-key.pem \
--outfile request.pem

11. Sign the request with the CA private key to obtain the client's certificate (client-

cert.pem):

$ certtool -c --load-request request.pem \
--outfile client-cert.pem \
--load-ca-certificate ../ca/ca.pem \
--load-ca-privkey ../ca/ca-key.pem

12. Securely transfer the necessary files to the server (ca.pem, server-cert.pem, server-

key.pem) and each client (ca.pem, client-cert.pem, client-key.pem).

On the logging server

Configuration:

$ModLoad imtcp

$DefaultNetstreamDriver gtls

$DefaultNetstreamDriverCAFile ca.pem
$DefaultNetstreamDriverCertFile server-cert.pem
$DefaultNetstreamDriverKeyFile server-key.pem

$ActionSendStreamDriverAuthMode x509/name
$ActionSendStreamDriverPermittedPeer client.example.com
$ActionSendStreamDriverMode 1

$InputTCPServerRun 10514

Centralised logging with rsyslog 21 www.canonical.com

On a logging client

Configuration:

$DefaultNetstreamDriver gtls

$DefaultNetstreamDriverCAFile ca.pem
$DefaultNetstreamDriverCertFile client-cert.pem
$DefaultNetstreamDriverKeyFile client-key.pem

$ActionSendStreamDriverAuthMode x509/name
$ActionSendStreamDriverPermittedPeer server.example.com
$ActionSendStreamDriverMode 1

. @@192.168.0.1:10514

Centralised logging with rsyslog 22 www.canonical.com

Advanced Rsyslog features applicable to central
logging

Rsyslog has a number of interesting and powerful advanced features. Here are two such

features as applicable to central logging:

• BSD-style blocks

• Logging queues

• Discard watermarks

BSD-style blocks

We can create blocks of rules with each one separated by the previous by a program or

hostname label. The block will only process messages corresponding to the program and/or

hostname given.

Use '!program' or '-program' to include or exclude programs and '+hostname' or '-hostname' to

do the same for hostnames. These features are also taken from the BSD sources and help in a

central logging environment.

Examples:

• Send all messages generated by the named process to file:

!named
. /var/log/named.log

• In a central logging context, set up a rule on the server for a particular host:

+mail.example.com
mail.* /var/log/mail/hosts

Logging queues

A logging queue is simply a buffer for log messages. There are several types provided by

rsyslog.

Disk Queues

A Disk Queue is a queue that resides solely on a hard drive. Reliability is increased while

performance suffers. You can impose a limit to the queue size in this way

$<object>QueueSize 15000 # 15k maximum elements

Centralised logging with rsyslog 23 www.canonical.com

In-Memory Queues

An In-Memory Queue is a queue that resides solely in volatile memory. Reliability is sacrificed

while performance is increased. It is worth mentioning however that this method is not

recommended when any form of reliability is required. There are two subtypes to this kind of

queue:

• FixedArray

• LinkedList

FixedArray uses a pre-allocated array that holds pointers to queue elements whereas

LinkedList allocates resources dynamically. There is some processing overhead with the

second type but can save you memory. The former is the default (with a limited size of 10k

messages/elements). You can impose a limit to the queue size as for disk queues.

$<object>QueueType LinkedList # dynamically grow this in-memory
queue

Hybrid Disk-Assisted In-Memory Queues

This is a combination of an In-Memory Queue and a Disk Queue. In that order. So data is

written to disk (and read back) on an as-needed basis. You set up such a queue by defining

both directives for each respective queue:

$<object>QueueType LinkedList # or FixedArray
$<object>QueueFileName filename

There is no actual queue size for a DA (disk-assisted) queue. It is limited by hard disk space

only. In order to limit the space available use

$<object>QueueMaxDiskSpace 100G # a maximum disk space of 100 GB

Queueing and de-queueing

It is possible to enable disk queues only during specific time intervals. A queue could be made

active during peak traffic hours (say 8 am to 8 pm) and de-activated for the rest of the day. This

would essentially allow the queue to dump its contents during the night.

$<object>QueueDequeueTimeBegin 20 # activate queue at 8 pm
$<object>QueueDequeueTimeEnd 8 # de-activate queue at 8 am

Centralised logging with rsyslog 24 www.canonical.com

Logging queue examples

Here are some examples of using queues in various situations. Add the following lines to your

configuration to enable queueing features.

Local disk logging

Create a default (FixedArray) queue for a standalone system:

$WorkDirectory /var/log/queue # destination queue directory
$MainMsgQueueFileName filename # set file name for this
action; enables disk mode

Remote disk logging

When logging to a remote server there may be times when the database is no longer able to

cope with the traffic volume. We set up a LinkedList In-Memory Queue; specify to save the

queue's memory-resident data if rsyslog ever shuts down; and connect to server 192.168.0.1

over the TCP protocol on port 514:

$WorkDirectory /var/log/queue # destination queue directory
$ActionQueueType LinkedList # de-couple this action queue
$ActionQueueFileName filename # set a file for this action;
enables disk mode
$ActionResumeRetryCount -1 # infinite retries on failure
$ActionQueueSaveOnShutdown on # save in-memory data if
rsyslog shuts down
. @@192.168.0.1:514 # connect to remote server

Remote database logging

We use the same setup as above but swap the last line with the following one. We will access a

MySQL server at 192.168.0.1 containing database 'logs' with user 'rsyslog' and a password of

'abc123':

. :ommysql:192.168.0.1,logs,rsyslog,abc123;

Centralised logging with rsyslog 25 www.canonical.com

Discard watermarks

When logging centrally, there may be times of sudden bursts of traffic. When a queue reaches

a threshold of a number of queued elements, less important messages can be discarded to help

alleviate the problem. The threshold in this context is called a 'discard watermark'. The

objective is to save queue space for more important messages. The algorithm discards both

incoming messages and those currently queued.

The discard watermark should be set sufficiently high to not discard messages unnecessarily

but low enough to allow for large message bursts.

$<object>QueueDiscardMark some_threshold # number of elements
$<object>QueueDiscardSeverity some_severity # numerical severity

This directive accepts both the usual textual severity keyword as well as a numerical code as

defined in RFC 3164.

To turn message discarding off simply make the discard watermark higher than the queue size.

An alternative is to specify a discard severity of 8. This is the default setting (to prevent

unintentional message loss).

Examples:

• Set up a main queue to discard messages less severe than Error (i.e. warning, info,

notice, and debug) when the queue exceeds 8000 messages:

$MainMsgQueueDiscardMark 8000
$MainMsgQueueDiscardSeverity 4

• Same as above:

$MainMsgQueueDiscardMark 8000
$MainMsgQueueDiscardSeverity warning

Centralised logging with rsyslog 26 www.canonical.com

Appendix A: References and useful Links

• Rsyslog home page

http://www.rsyslog.com

• Rsyslog mailing list (rsyslog-users)

http://lists.adiscon.net/mailman/listinfo/rsyslog

• Rsyslog public forums

http://kb.monitorware.com/rsyslog-f40.html

• The Ins and Outs of System Logging Using Syslog

http://www.sans.org/rr/whitepapers/logging/1168.php

• Comparison between rsyslog and syslog-ng

http://www.rsyslog.com/doc-rsyslog_ng_comparison.html

• RFC 3164 (The BSD Syslog Protocol)

http://www.ietf.org/rfc/rfc3164.txt

• RFC 3195 (Reliable Delivery for Syslog)

http://www.ietf.org/rfc/rfc3195.txt

• The GNU Transport Layer Security Library

http://www.gnu.org/software/gnutls/manual/html_node/index.html

• List of log analysers

http://www.syslog.org/wiki/Main/LogAnalyzers

• Rsyslog main developer blog

http://blog.gerhards.net/

• SANS Information System Audit Logging Requirements (2006)

http://www.sans.org/resources/policies/info_sys_audit.doc

• NIST Information System Audit Logging Requirements (2006)

http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf

• Distributed syslog architectures with syslog-ng Premium Edition (2008)

http://www.balabit.com/dl/white_papers/syslog-ng-v2.1-whitepaper-distributed-syslog-

architectures-en.pdf

Centralised logging with rsyslog 27 www.canonical.com

http://www.rsyslog.com/
http://www.balabit.com/dl/white_papers/syslog-ng-v2.1-whitepaper-distributed-syslog-architectures-en.pdf
http://www.balabit.com/dl/white_papers/syslog-ng-v2.1-whitepaper-distributed-syslog-architectures-en.pdf
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf
http://www.sans.org/resources/policies/info_sys_audit.doc
http://www.sans.org/resources/policies/info_sys_audit.doc
http://www.sans.org/resources/policies/info_sys_audit.doc
http://blog.gerhards.net/
http://www.syslog.org/wiki/Main/LogAnalyzers
http://www.gnu.org/software/gnutls/manual/html_node/index.html
http://www.ietf.org/rfc/rfc3195.txt
http://www.ietf.org/rfc/rfc3164.txt
http://www.rsyslog.com/doc-rsyslog_ng_comparison.html
http://www.sans.org/rr/whitepapers/logging/1168.php
http://kb.monitorware.com/rsyslog-f40.html
http://lists.adiscon.net/mailman/listinfo/rsyslog

Appendix B: rsyslog.conf / syslog.conf diff

$ diff rsyslog.conf syslog.conf

- XXX this should be diff -u, only RMS still uses context diffs
1c1
< # /etc/rsyslog.conf Configuration file for rsyslog v3.

> # /etc/syslog.conf Configuration file for syslogd.
3,32c3,4
< # For more information see
< # /usr/share/doc/rsyslog-
doc/html/rsyslog_conf.html
<
<
< #################
< #### MODULES ####
< #################
<
< $ModLoad imuxsock # provides support for local system logging
< $ModLoad imklog # provides kernel logging support
(previously done by rklogd)
< #$ModLoad immark # provides --MARK-- message capability
<
< # provides UDP syslog reception
< #$ModLoad imudp
< #$UDPServerRun 514
<
< # provides TCP syslog reception
< #$ModLoad imtcp
< #$InputTCPServerRun 514
<
<
< ###########################
< #### GLOBAL DIRECTIVES ####
< ###########################
<
< #
< # Use default timestamp format.
< # To enable high precision timestamps, comment out the
following line.
< #
< $ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

> # For more information see syslog.conf(5)
> # manpage.
35c7
< # Set the default permissions for all log files.

> # First some standard logfiles. Log by facility.
37,39d8
< $FileOwner root
< $FileGroup adm
< $FileCreateMode 0640
41,53d9
< #
< # Include all config files in /etc/rsyslog.d/
< #
< $IncludeConfig /etc/rsyslog.d/*.conf
<
<
< ###############
< #### RULES ####

Centralised logging with rsyslog 28 www.canonical.com

< ###############
<
< #
< # First some standard log files. Log by facility.
< #
68c24
< mail.warn -/var/log/mail.warn

> mail.warning -/var/log/mail.warn
71,72c27
< #
< # Logging for INN news system.

> # Logging for INN news system
79c34
< # Some "catch-all" log files.

> # Some `catch-all' logfiles.
84c39
< *.=info;*.=notice;*.=warn;\

> *.=info;*.=notice;*.=warning;\
101c56
< # *.=notice;*.=warn /dev/tty8

> # *.=notice;*.=warning /dev/tty8
114c69,70
< *.=notice;*.=warn |/dev/xconsole

> *.=notice;*.=warning |/dev/xconsole
>

Centralised logging with rsyslog 29 www.canonical.com

Appendix C: Message properties

Property Meaning

msg entire message

rawmsg entire message exactly as it was received from the socket

hostname hostname of original sender

source alias for hostname property

fromhost hostname of immediate sender (may be different from original sender)

fromhost-ip IP address of 'fromhost'

syslogtag message Tag (see appendix A; "The BSD Syslog Protocol")

programname name of reporting program

pri priority (undecoded)

pri-text priority (textual form)

iut MonitorWare InfoUnitType - used when talking to a MonitorWare

backend

syslogfacility facility (numerical form)

syslogfacility-text facility (textual form)

syslogseverity severity (numerical form)

syslogseverity-text severity (textual form)

syslogpriority alias for syslogseverity property (not pri)

syslogpriority-text alias for syslogseverity-text property

timegenerated high resolution timestamp of received message

timereported message timestamp

timestamp alias for timestamp property

protocol-version contents of the PROTCOL-VERSION field from IETF draft draft-ietf-

syslog-protcol

structured-date contents of the STRUCTURED-DATA field from IETF draft draft-ietf-

syslog-protocol

app-name contents of the APP-NAME field from IETF draft draft-ietf-syslog-

protocol

Centralised logging with rsyslog 30 www.canonical.com

procid contents of the PROCID field from IETF draft draft-ietf-syslog-protocol

msgid contents of the MSGID field from IETF draft draft-ietf-syslog-protocol

inputname identifier of input module that generated the message (if available)

Centralised logging with rsyslog 31 www.canonical.com

Appendix D: Property options

Option Meaning

uppercase convert property to uppercase

lowercase convert property to lowercase

drop-last-lf remove last linefeed

date-mysql format as mysql date

date-rfc3164 format as RFC 3164 date

date-rfc3339 format as RFC 3339 date

date-subseconds subseconds of a timestamp (always 0 for low precision timestamps)

escape-cc replace control characters (ASCII value 127 and values less then 32)

with an escape sequence. The sequnce is "#<charval>" where charval

is the 3-digit decimal value of the control character. For example, a

tabulator would be replaced by "#009".

space-cc replace control characters by spaces

drop-cc drop control characters - the resulting string will neither contain control

characters, escape sequences nor any other replacement character

like space.

sp-if-no-1st-sp returns either a single space character or no character at all. Field

content is never returned. A space is returned if (and only if) the first

character of the field's content is NOT a space. This option is a hack

to solve a problem rooted in RFC 3164 which specifies no delimiter

between the syslog tag sequence and the actual message text.

Almost all implementation in fact delimit the two by a space. As of

RFC 3164, this space is part of the message text itself.

secpath-drop Drops slashes inside the field (e.g. "a/b" becomes "ab"). Useful for

secure pathname generation (with dynafiles).

secpath-replace Replace slashes inside the field by an underscore. (e.g. "a/b"

becomes "a_b"). Useful for secure pathname generation (with

dynafiles).

Note: options escape-cc, space-cc, or drop-cc require that

$EscapeControlCharactersOnReceive is set to off.

Centralised logging with rsyslog 32 www.canonical.com

Every effort has been made by Canonical to ensure the accuracy of this document but Canonical disclaims, to the extent

possible at law, any liability for any error or omission.

© Canonical Limited 2009. Ubuntu and associated logos are registered trademarks of Canonical Ltd., all rights reserved. All

other trademarks are the properties of their respective owners. Any information contained in this document may change

without notice and Canonical is not held responsible for any such changes.

Centralised logging with rsyslog 33 www.canonical.com

